. Technoloqgy Paper
-~ CONNX: 9 Pap

Solutions

Using CONNX and Java
to Access Data from OpenVMS

by Larry McGhaw, Director of Product Development

Currently, the most popular use of CONNX is to provide enterprise data access to a Windows client PC.
However, there are some cases where it would be useful to have this same client access data stored in a VMS
database. This can be accomplished with Java. An example of where a VMS driven-connection can be found
is when synchronizing a non-VMS database real-time with VMS data.

Java support requires Alpha OpenVMS version 7.1 or greater. The JDK for the Alpha platform is available at
Compaq’s website: http://www.compag.com/java/alpha (There is no Java support for VAX machines). New
versions of OpenVMS may come with a preinstalled JDK, while older versions of OpenVMS will likely require
ECO patches if they have not already been applied. The OpenVMS JDK is similar to JDKs run on other plat-
forms. You must set the Classpath, which under VMS is a logical, to the correct location.

Java _ Java Running Java
Source Code AVAC.EXE Compiled Class || JAVA.EXE Application

To compile Java source code, use JAVAC.EXE; to run compiled java source, use JAVA.EXE. Most VMS develop-
ers program in COBOL, C, or BASIC. How can these programming languages take advantage of a pure Java
JDBC driver such as CONNX? One simple way to accomplish this is through VMS mailboxes. A VMS mailbox
is a simple queue that can be opened for both input and output. Mailboxes can be accessed using normal
file-level semantics, making them easily accessible from all programming languages under VMS.

The first step is to create two permanent VMS mailboxes, using the VMS system call CREMBX. This is
straightforward, as the C++ example below illustrates:

struct ItemList {
short nBufferLength;
short nltemCode;
char *IpName;

long ILength;
long IEndOfltemlList;
1y
int main()
.{
int err;
int nChannel;

char szDeviceName[256];

Accessing Data from OpenVMS with Java, continued

err = sys$crembx((char) 1, &nChannel, OL, 100L, OL, 3L, OL, OL);
printf(“ CreateMailbox Channel=(%d) Err=(%d) (%d) (%d)\n", (long) nChannel, err, errno,
vaxc$errno);

// Get the File name for the newly created mailbox

char szStat[8];

[temList Item;

memset(szDeviceName, 0, sizeof(szDeviceName));

memset(&Item, 0, sizeof(ltem));

ltem.nBufferLength = 256;

[tem.nltemCode = DVI$_DEVNAM;

Item.I[pName = szDeviceName;

[tem.|[EndOfltemList = O;

err = sys$getdvi(OL, (short) nChannel, OL, <em, (long *) szStat, OL, OL, OL);

// Permanent Mailbox created.
printf(“Permanent Mailbox Created: %s\n”, szDeviceName);

}
Java <~ 1 SQL Statement VMS Mailbox ;'VMSAp et |
SQL Listener - plication
Daemon _ Basic, C, COBOL

SQL Results VMS Mailbox

One permanent mailbox can be used for input of SQL statements and another can be used for output results.
Two components are required: a Java daemon listener and a VMS application that sends SQL statements. The
Java daemon program opens the SQL statement mailbox and waits for input. Once input is received, the
program processes the SQL statement and returns the results in the SQL results mailbox. Other applications,
written in C, C++, COBOL, or BASIC, open the SQL Statement mailbox and send SQL commands to this
mailbox. They then read the output from the SQL results mailbox.

For the complete source to this sample use of Java on VMS, visit ftp:/ftp.connx.com/utils/cnxjava.zip

For more information about CONNX, contact:

CONNX Solutions, Inc.
2039 152nd Avenue NE
Redmond, WA 98052
Toll Free: 1-888-882-6669

Tel: 425-519-6600
Fax: 425-519-6601 ®
www.CONNX.com N\

Solutions’

All trademarks, registered trademarks, product names, and company names
mentioned herein are acknowledged as the property of their respective owners.

