
 1

FEATURED
SQL JOINS

Dissecting SQL Joins

Overview

One of the marvelous things about the relational model used in SQL queries is that we

only need to store business facts in a single location. There is no need to store redun-

dant copies of information, greatly reducing the chance of inconsistent information. If

we were to store two copies of a customer’s mailing address, there is always the

chance that one of the copies might not get updated. But this increased reliability and

reduced storage space does have a cost. We need to be able to tie the information to-

gether, and we need to connect things in different ways, depending on what we want

to accomplish. So let’s take a look at some different ways to combine information us-

ing SQL join operations to achieve the results that we need.

For this article, we will use some sample basketball data collected from an interesting

site named BasketballReference.com This site contains actual NBA data which you can

download from this link (if you would like to repeat my experiments) at http://

www.basketballreference.com/ stats_download.htm or you can use the sample data-

base I created using the data. They will probably make some corrections to the data

due to a few minor inconsistencies that I discovered and pointed out to them, so you

may prefer to use the sample data along with the original errors which can be found

at ftp:/cap.connx.com/pub/nba/

Dissecting SQL Joins
By Dann Corbit, Sr. Software Engineer

Table of Contents

Overview __ 1

Inner Joins ___ 2

Outer Joins __ 4

Other Joins __ 6

Problems with Using Joins ______________________________________ 8

Solutions __ 8

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 2

FEATURED
SQL JOINS

Dissecting SQL Joins

Inner Joins

First of all, we will consider inner joins. Inner joins are useful when we want to match things

from different tables, and when we want to discard everything from both tables where a

match is not found. Consider a database that contains information about NBA basketball

sports teams. In that database, we might have a table called “Season” which contains facts

about the regular season. We might also have a table called “Teams” which contains facts

about teams. And we could have a table called “Players” which contains the player’s facts. If

we perform an inner join on these three tables using common keys, we can discard all the

information except the part that matches all three tables.

In Figure 1, we see an area marked “Keep!” that is shaped a bit like the bottom of an electric

iron. This is the area of intersection that is achieved with an inner join on those three tables.

The other areas of overlap are also discarded, along with any areas with no common key ele-

ment (or that are removed with WHERE clause restriction).

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 3

FEATURED
SQL JOINS

Dissecting SQL Joins

Inner Joins, Continued

So let’s take a look at a sample query that works the same way as Figure 1. This query selects

the teams, players, and scoring averages from the three tables for the year 1999.

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 4

FEATURED
SQL JOINS

Dissecting SQL Joins

Outer Joins

Inner joins are the most straightforward sort of joins. But the kind of filtering produced by an

inner join is not always what is wanted. This brings up a second sort of join: the outer join.

Sometimes, rather than throwing away things that do not match from both tables, we want

to keep all the data in one table and enhance that information with additional information

from another table. For instance, we might have a table of part information which has part

number, part price, and part description, but we have another table with ad copy in it for

some of those parts. To form a catalog, we could do an inner join on part number, but that

would throw out all the entries for which we do not have ad copy yet. We still want to list

those parts also in our catalog! What is needed is an outer join. There are two frequently

used kinds of outer join: the left outer join and the right outer join. With a left outer join, we

are embellishing the table on the left, and with a right outer join we are embellishing the ta-

ble on the right.

Figure 3 shows a right outer join. To envision a left outer join, simply reverse the kept

and discarded areas. The kept data gathers additional information from the other participat-

ing table within the area labeled “Embellished”.

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 5

FEATURED
SQL JOINS

Dissecting SQL Joins

Outer Joins, Continued

Left and right outer joins are especially helpful for finding errors, orphaned records, and

things of that nature. If we return to the sample NBA data, we can examine an example of

how to use an outer join to discover possible data problems. The data provided on the Web-

site was entered manually, and with thousands and thousands of records, mistakes are inevi-

table. Let’s check the “all-star” table for possible problems against the primary key of the

“players” table by creating a query that uses a left outer join. We should be able to see if any

of the player ID values in the “all-star” table are invalid or corrupt as shown in Figure 4 be-

low. We have a list of 15 player ID values that do not actually exist in the primary fact table

for players. If you’re an NBA fan, you can probably guess who some of the players were by

looking at the list. In a case like this, we were more interested in the rows that were not em-

bellished (which return null values) than in actually collecting additional player information

from the “players” table.

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 6

FEATURED
SQL JOINS

Dissecting SQL Joins

Other Joins

In addition to the left and right outer joins, there is a join called the full outer join. It is similar

to left and right outer joins except that we do not throw away any data from either table and

we also create matches wherever possible. For those rows where no matches exist, we create

null values, just like the left and right outer joins. We could use a full outer join to discover

errors in both tables at once using an approach like the one described above. In reality, it’s

not such a good idea, because for each row, we will have to carefully determine whether the

problem is in the left or the right table. It is usually preferable to perform left and right outer

joins instead, since the result is simpler to interpret.

There is another sort of join that usually happens by accident. It is called a Cartesian product.

The Cartesian product happens when we forget to add join column criteria to limit rows in

the result set. The result of a Cartesian product is a multiplication of every row in both tables.

So if you have two tables, each with five thousand rows, the Cartesian product has twenty

five million rows in it. And if both tables should have one million rows, then the Cartesian

product has one trillion rows in it. Despite what some textbooks say about how useful the

Cartesian product can be, it’s probably not a good idea to form one.

There is a special classification of join types that is not really a new sort of join but (rather) a

special case of one of the other join types called a self-join. A self-join occurs when a table is

joined against itself. A typical example found in textbooks is when a table of employees con-

tains also the supervisor data. A self-join can be formed against such a table in order to

identify who works for a given employee or for whom a given employee works. Self-joins are

also useful for many other things. We will use a self-join against our NBA data to ferret out

more data problems.

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 7

FEATURED
SQL JOINS

Dissecting SQL Joins

Other Joins, Continued

Notice in the results from the self-join query in Figure 5 that there are exactly three players

who have been entered with last name and first name reversed in one of the tables. One

simple way to correct this problem is to normalize the database so that the first name and

last name facts are carried only in the “players” table

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

 8

FEATURED
SQL JOINS

Dissecting SQL Joins

Problems with Using Joins

Well, now that we have the various join types fresh in our minds; let’s think about problems

that can arise from using joins. One obvious problem is choosing the wrong sort of join or

leaving out the join criteria altogether and thereby creating a Cartesian product. When the

wrong join type is chosen, the query results are usually not as expected (content is missing

that should be there or content is there that should be missing).

It is obvious if a Cartesian product is created because our computer will hang for a while with

the disk light blinking like mad and the CPU meter pegged at 100% as we rapidly run out of

disk space (or worse yet – we are responsible for similar resource problems occurring on the

main database server).

Consider a more common and insidious problem – the problem of poor join performance.

We might formulate a join and discover that it does get the right answer, but it takes a very

long time to get it. We might be joining on a column or columns that lack an index. When

that happens, a database server looks at all the data in the table. Worse yet, it has to process

the join by creating order in the data via hashing, nested loops, or some other workaround

for the lack of an index file.

Solutions

One possible solution is to create an index. Unfortunately, most of the time, creating an in-

dex is not possible. Adding additional indexes to an existing database can slow update per-

formance and is often not allowed, even if performance is not an issue, because of the dan-

ger of making changes to an existing, debugged, production system. One possible worka-

round for this sort of thing on joins with equality tests against a column is to use a special

CONNX escape clause called {forcetempkey} which asks CONNX to process the join.

CONNX has a special join algorithm which is very fast. We have recorded times for a large

data set that outperforms a native join on a unique clustered index.

Another possibility is to develop a reporting server using CONNX Data Synchronization, and

create new indexes on the target server to your heart’s content. Since the original tables do

not need any sort of schema changes, you can make any modifications that you need to get

the job done.

Copyright CONNX Solutions, Inc. All rights reserved.
info@connx.com | 425.519.6600 | 2039 152nd Ave NE Redmond, WA 98052 | www.connx.com

